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ABSTRACT 
 

The rise in the involvement of people on social media has exponentially increased the volume of the data. Along with the publicly 

available information of the individuals, such as name, date of birth, address, phone number, etc., the data intrinsically hides a 

vast information about individual usage pattern such as likes, dislikes, shopping history, browsed products, and friends’ network. 

This information has been proved to be useful in targeting customers with specific products, services, or offers to increase revenue. 

Generally, the domain experts extract this information through manual feature engineering to build a classification or regression 

model, but on the given high dimensional data with high feature correlation and noise, the task becomes complicated. The existing 

state-of-the-art non-linear dimensionality reduction methods solve the problem by preserving the maximum non-linear relationship 

among the data while projecting it to its intrinsic dimensional space. Local tangent space alignment (LTSA) also aims to give true 

intrinsic representation by aligning the tangent spaces of spatially close data points using covariance metric. In this paper, we 

propose a cross-covariance based local tangent space alignment (CcLTSA) method to preserve the maximum non-linear 

relationship among data. The proposed method preserves both local and global information by exploiting the statistical 

independence between the locally connected instances using the Hilbert-Schmidt independence criterion. Extensive experiments 

on synthetic data set shows that the proposed CcLTSA gives better intrinsic space representation. The classification results on 

real-world data set proves that CcLTSA outperforms the existing state-of-the-art methods by≈3%. 

 
Keywords: Social Network Mining, Dimensionality reduction, Manifold Learning, Local Tangent Space Alignment, Hilbert-Schmidt 

Independence Criterion

 

1.  INTRODUCTION 
 

 The recent increase in social media engagement has 

changed the whole scenario of data mining [1][2][3]. Just like 

in the past, miners extract precious metals out from mines; the 

data miners also try to extract meaningful information and 

insights about an individual or group through data mining. This 

information generally hides in plain sight of the data and can be 

extracted only by employing sophisticated machine learning 

(ML) tools [4][5]. ML on social media content can give a good 

overview of individual usage pattern and his/her interactions 

with others [6][7][8]. Further, this can be used for multiple 

purposes such as showing relevant contents similar to their 

interest, suggest already available social groups of similar 

choice [9], target advertisement [10], etc. The same set of 

information is also used by companies to understand the 

requirements of the users, poll, and opinion about their 

products, market survey for products to be launched, and so on. 

On the darker side of social media, the recent increase in online 

trolling and bullying [11][12] has made a negative impact on its 

users. ML algorithms can also help in curbing these activities 

by an accurate sentiment analysis or content filtering. 

 

     Though the big data captured through social media is 

useful, it becomes a great deal to extract the required 

information from it. Previously, this was handled by a domain 

expert who through manual feature engineering performed 

feature extraction, selection, clustering, etc. However, with the 

given high dimensional data, manual efforts fall short of 

achieving the target with an increase in cost, time, and result in 

erroneous inferences. In such situations, dimensionality 

reduction using ML comes handy [13][14]. The ML models 

inherently analyse the statistical and geometrical properties of 

data to find their most optimal representation using a minimum 

number of dimensions containing sufficient discriminative 

power [15]. 

 

     It is well known that not all the dimensions constitute 

in information extraction. Some dimensions are strongly co-

related to others, and few of them are present due to unknown 

transformations and noise in the data. If, the data contains a 

linear relationship among all the instances, the traditional 

algorithms like principal component analysis (PCA) [16][17], 

multidimensional scaling (MDS) [18], etc. can be applied. As 

not all data follow linear properties, it is also essential to 

preserve the non-linear relationship present in the data even 

after dimensionality reduction has been applied. Manifold 

learning [19][20] helps in achieving this goal through a set of 

non-linear dimensionality reduction methods. In the core, 

manifold learning assumes that the given high dimensional data 

lie on a very low dimensional space where all instances follow 

Euclidean properties. On this low dimensional space, data 

visualization, clustering, classification, and regression can be 

performed much easily and accurately than on the given high 

dimensional space [21]. A few manifold learning methods 

include: local tangent space alignment (LTSA) [22], isometric 

mapping (ISOMAP) [23], local linear embedding (LLE) [24], 

Laplacian eigenmaps (LE) [25] and Hessian eigenmaps (HE) 

[26]. The idea is to exploit the local linear geometrical 

properties present in the data and perform a dimensionality 

reduction by preserving those properties. The better the 
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properties preserved, the more accurate is the low dimensional 

representation.  

 

Assume from a smooth Riemannian manifold ℳ ∈

ℝ𝐷, data samples 𝑥𝑖 ∈ 𝑋 have been drawn. In LTSA, the aim is 

to align the local tangent space around each 𝑥𝑖 to determine the 

true connectivity between all manifold samples. To accomplish 

the task, LTSA assumes the following: 

1. The samples drawn follow the uniform distribution 

and cover the whole sample space. 

2. The spatial relationship among the instances should be 

preserved i.e., instances close on high dimension 

should lie close on the low dimensional space. 

 

  However, the randomly drawn samples fail to assure 

the first assumption, and due to unknown transformations and 

noise, the spatial relationship between instances cannot be used 

alone to measure the similarity between them. Due to highly 

correlated and the noise, the data generally lie on the periphery 

of the space, which leads to erroneous inferences. In manifold 

learning, it is well known that the actual data resides on a much 

lower dimension having sufficient discriminative power. In the 

core, the manifold learning method heavily relies on the 

measure of similarity between the instances. The distance or 

coordinate-based similarity such as Euclidean, Cosine, etc. fails 

to deliver accurate metric due to noise present in the data. 

Similarly, covariance used in LTSA also gets affected by 

similar factors leading to erroneous results. The problem lies in 

the covariance assumption that all data observations lie on the 

same space; however, due to varying curvature of the 

underlying manifold structure, this assumption does not hold. 

The concept of classification using dimensionality reduction as 

a pre-processing step is depicted in fig. 1.  

 

 
Figure 1: Concept of classification with Dimensionality Reduction 

     In this paper, we propose cross-covariance based 

LTSA (CcLTSA) using Hilbert-Schmidt independence 

criterion (HSIC) to measure statistical 

dependence/independence between the neighboring instances. 

CcLTSA aims to preserve this statistical information along with 

the given spatial relation on the lower-dimensional space to 

obtain the true intrinsic geometrical co-ordinates of the given 

data.  

 

The rest of the paper has been organized by describing 

the problem definition in section 2, followed by the proposed 

method, and its preliminaries in section 3. Extensive 

experiments using CcLTSA and existing state-of-the-art 

dimensionality reduction methods have been listed and 

compared in section 4. The paper concludes with the findings 

of the proposed work in section 5. 

 

2. PROBLEM DEFINITION 
 

 Given 𝐷 dimensional input data (𝑥𝑖)𝑖=1
𝑛 ∈ ℝ𝐷 

captured from social network modelled using a graph 𝐺 =

(𝑉, 𝐸) where, each instance becomes a vertex 𝑥𝑖 ∈ 𝑉 and the 

link between two instance 𝑥𝑖 and 𝑥𝑗 is represented using a 

weighted edge 𝑒𝑖𝑗 ∈ 𝐸. As 𝐷 is very large and due to the strong 

co-relation between them, most of the data lie on the periphery 

of the input space. Thus, the underlying ML model fails to 

extract accurate information from it. However, the true 

discriminative complement information lies on a much lower 

dimension 𝑑 ≪ 𝐷. The aim is to exploit the intrinsic 

information present in 𝑥𝑖 to obtain its optimal representation on 

ℝ𝑑 with maximum property preservation. 

 

     In its core, manifold learning algorithm assumes that 

if two instances are close on given input space then they should 

also lie close on lower-dimensional space. This is ensured by 

measuring the similarity between such instances generally 

through some distance function. However, when the original 

data is affected by noise, the distance automatically becomes 

noisy, and hence, the resultant lower-dimensional 

representation becomes erroneous. The aim is to discard the 

effects of noise and extract the true local geometrical data 

representation which contains the highest discriminative 

information through cross-covariance based LTSA. 

 

3. PROPOSED METHODOLOGY 
 

3.1 Hilbert-Schmidt independence criterion 

 

The HSIC is defined by Hilbert-Schmidt operators 

[27]. 

 

Definition 1:  Let 𝐻𝑥 and 𝐻𝑦 be two separate Hilbert spaces 

where, the orthonormal basis of 𝐻𝑥 is given by 𝑢𝑖 ∈ 𝐼 . ℱ: 𝐻𝑥 →

𝐻𝑦   is a compact operator with ∑ ∥ ℱ𝑒𝑖 ∥𝑦
2

𝑖∈𝐼

< +∞ then, ℱ 

is a Hilbert-Schmidt (HS) operator [28]. 

 

Let, 𝐻𝑆(𝐻𝑥 → 𝐻𝑦)be the space of all HS operators 

from 𝐻𝑥 to 𝐻𝑦 . Then the Hilbert space is obtained from 

    (𝐻𝑆(𝐻𝑥 → 𝐻𝑦), ⟨⋅,⋅⟩𝐻𝑆) 

where, ⟨⋅,⋅⟩𝐻𝑆 defines the inner product. HSIC involves two 

reproducing kernel Hilbert space (RKHS) to measure the 

independence between them. 

      

Let, 𝐻𝑥 = (𝐿2(Ω𝑥), ⟨⋅,⋅⟩
𝑥
) be a RKHS where, 

𝜅𝑥: Ω𝑥 × Ω𝑥 → ℝ is the reproducing kernel of 𝐻𝑥. Define 

𝜑
𝑥
: Ω𝑥 → 𝐻𝑥 such that for all 𝑥𝑖 ∈ Ω𝑥 , 𝜑

𝑥
(𝑥𝑖) = 𝜅𝑥(⋅, 𝑥𝑖) ∈

𝐻𝑥 and ⟨𝜑𝑥(𝑥𝑖
′), 𝜑𝑥(𝑥𝑖

″)⟩𝑥 = 𝜅𝑥(𝑥𝑖
′, 𝑥𝑖

″). Similarly, for Ω𝑦   on 

𝐻𝑦. 

 

Theorem 1: Let, Φ: 𝐻𝑆(𝐻𝑥 → 𝐻𝑦) → ℝ such that for all ℱ ∈

𝐻𝑆(𝐻𝑥 → 𝐻𝑦) then, 
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Φ(ℱ) = 𝐄𝑥𝑦[⟨𝜑𝑥(𝑥) ⊗ 𝜑𝑦(𝑦), ℱ⟩𝐻𝑆] 

  

If, 𝐄𝑥𝑦[∥ 𝜑
𝑥
(𝑥) ⊗ 𝜑

𝑦
(𝑦) ∥𝐻𝑆] < +∞, then Φ is 

continuous linear function on 𝐻𝑆(𝐻𝑥 → 𝐻𝑦). Based on 

representation theorem (Riesz theorem) [29] of continuous 

linear functions, there must be a unique operator ℱΦ ∈

𝐻𝑆(𝐻𝑥 → 𝐻𝑦) such that for all HS operators ℳ ∈ 𝐻𝑆(𝐻𝑥 →

𝐻𝑦), 

Φ(ℱ) = 𝐄𝑥𝑦[⟨𝜑𝑥(𝑥) ⊗ 𝜑𝑦(𝑦), ℱ⟩𝐻𝑆] = ⟨ℱ, ℱΦ⟩𝐻𝑆 

        where, ℱΦ is the cross-covariance operator represented 

using  𝐶𝑥𝑦. 

 

Definition 2:  Given two RKHS spaces 𝐻𝑥 and 𝐻𝑦 with joint 

measure 𝑝𝑥𝑦 , the HSIC is defined as the squared HS-norm of 

 𝐶𝑥𝑦 

𝐻𝑆𝐼𝐶(𝑝𝑥𝑦 , 𝐻𝑥 , 𝐻𝑦): =∥ 𝐶𝑥𝑦 ∥𝐻𝑆
2  

 

Lemma 1:         

𝐻𝑆𝐼𝐶(𝑝𝑥𝑦 , 𝐻𝑥 , 𝐻𝑦) = 𝐄𝑥,𝑥′,𝑦,𝑦′[𝜅𝑥(𝑥, 𝑥′)𝜅𝑦(𝑦, 𝑦′)] +

𝐄𝑥,𝑥′[𝜅𝑥(𝑥, 𝑥′)]𝐄𝑦,𝑦′[𝜅𝑦(𝑦, 𝑦′)] −

2𝐄𝑥,𝑦[𝐄𝑥′[𝜅𝑥(𝑥, 𝑥′)]𝐄𝑦′[𝜅𝑦(𝑦, 𝑦′)]]       

        Here, 𝐄x,x′,y,y′  denotes the expectation over independent 

pairs (x, y) and (x′, y′) drawn from pxy. 

 

Definition 3:        Let, 𝑍: = {(𝑥1, 𝑦1), (𝑥2, 𝑦2) … (𝑥𝑛 , 𝑦𝑛)} ⊆
𝑋 × 𝑌 be set of 𝑛 independent observations drawn from 𝑝𝑥𝑦 . 

The empirical HSIC can be estimated using 

            𝐻𝑆𝐼𝐶(𝑍, 𝐻𝑥 , 𝐻𝑦): =
1

(𝑛−1)2 𝑡𝑟(𝐾𝐻𝐿𝐻)  (1) 

        where, 𝐾, 𝐻, 𝐿 ∈ ℝ𝑛×𝑛 , 𝐾𝑖𝑗 = 𝜅𝑥(𝑥𝑖, 𝑥𝑗), 𝐿𝑖𝑗 =

𝜅 (𝑦
𝑖
, 𝑦

𝑗
)and 𝐻𝑖𝑗 = 𝐼 −

𝛿𝑖𝑗

𝑛
 is the centering matrix. 

 

3.2 CROSS-COVARIANCE BASED LOCAL TANGENT 

SPACE ALIGNMENT (CcLTSA) 

 

      The given 𝑛 data samples from a smooth Riemannian 

manifold ℳ can be represented as (𝑥𝑖)𝑖=1
𝑛 ∈ ℝ𝐷.  It is well 

known that the data actually lies on a much lower dimension 

space 𝑑 ≪ 𝐷 and can be represented by 

𝑓: 𝐶 ⊂ ℝ𝑑 → ℝ𝐷 

where, 𝐶 is a compact subset of ℝ𝑑 and 𝑓 is the data generation 

function i.e. 

𝑥𝑖 = 𝑓(𝜏𝑖) + 𝜂
𝑖
 

where, 𝜏𝑖 are original feature vectors or the lower dimensional 

complement information and 𝜂
𝑖
 is the noise. A linear manifold 

learning can be solved by minimizing the reconstruction error 

𝑚𝑖𝑛 ∥ 𝐸 ∥= 𝑎𝑟𝑔𝑚𝑖𝑛𝑐,𝑈,𝑇 ∥ 𝑋 − (𝑐𝑒𝑇 + 𝑈𝑇) ∥𝐹 

where, ∥⋅∥𝐹  defines the Frobenius norm on the matrix, 𝑋 =
[𝑥1, 𝑥2 … 𝑥𝑛], 𝑇 = [𝜏1, 𝜏2 … 𝜏𝑛], 𝐸 = [𝜂1, 𝜂2 … 𝜂𝑛], 𝑒 ∈
𝟙𝑛 column vector, 𝑐 is the centering matrix and 𝑈contains 

orthonormal basis of intrinsic subspace. The co-relation matrix 

is obtained using 

       𝑋
^

= (𝑋 − 𝑋𝑒𝑇)(𝑋 − 𝑋𝑒𝑇)𝑇   (2) 

where, 𝑥𝑖 ∈ 𝑋 =
1

𝑛
∑ 𝑥𝑗

𝑛

𝑗=1
 is the centered matrix. Then, the 

problem can solved by performing singular value 

decomposition (SVD) on 𝑋
^

 

𝑆𝑉𝐷(𝑋
^

) = 𝐐Σ𝐕𝑇   (3) 

where, both 𝐐 ∈ ℝ𝐷×𝐷  and 𝐕 ∈ ℝ𝑛×𝑑  are orthonormal 

matrices, and Σ ∈ ℝ𝐷×𝑛 is the singular value matrix. The 

measure of similarity in the local region completely relies on 

result from eqn. 2. However, as it depends on the given 

coordinate system which is affected by noise and co-related 

dimensions, the similarity cannot be assured to be accurate. By 

replacing the co-relation matrix with cross-covariance matrix 

using HSIC, the statistical similarity between instances are 

obtained in Hilbert space which minimizes the effect of noise 

and gives accurate result. Briefly, a cross-covariance operator 

maps from one space to another, whereas a covariance operator 

maps from a space to itself. In the linear algebraic case, the 

covariance is 𝐶𝑥𝑥: = 𝐄𝑥[𝑥𝑥𝑇] − 𝐄𝑥[𝑥]𝐄𝑥[𝑥𝑇], while the cross-

covariance is 𝐶𝑥𝑦: = 𝐄𝑥,𝑦[𝑥𝑦𝑇] − 𝐄𝑥[𝑥]𝐄𝑦[𝑦𝑇]. On replacing 

covariance in eqn. 2 to cross-covariance from eqn. 1, the 

similarity within a neighborhood is measured using 

𝑋
~

= 𝑋 − 𝑋𝑒𝑇 ; 𝐾 = 𝜅𝑥(𝑋
~

, 𝑋
~ 𝑇

) ; 𝐻 = 𝐼 −
𝟙

𝑛
 

𝑋
^

= 𝐻𝐾𝐻         (4) 

where, 𝜅  must be a positive definite kernel. 

⇒ Φ = 𝑆𝑉𝐷 (𝑋
^

) = 𝐐𝑑Σ𝑑𝐕𝑑
𝑇 

The optimal Φ∗ is given by eigenvectors 

𝐐
𝑑

 corresponding to 𝑑 largest singular values. Then, the linear 

manifold can be represented as 

𝑓(𝜏) = 𝑋 + Φ∗𝜏 

and the coordinate matrix Γ is given by 

Γ = (Φ∗)𝑇𝑋
^

= diag(𝜎1 … 𝜎𝑑)𝐕𝑑
𝑇 

         Γ contains the low dimensional representation of the 

given data. In case of non-linear dimensionality reduction, it is 

required to explore and exploit local linear region around each 

observation. The local linear structure can be extracted by 

representing each sample 𝑥𝑖 with weighted linear sum of its 

neighbors 𝑁𝑖. 

𝑁𝑖 = [𝑥𝑖,1, 𝑥𝑖,2 … 𝑥𝑖,𝑘] 

 

In its core LTSA works on the assumption that if the 

manifold is correctly unfolded then all tangent spaces will be 

aligned. The 𝑑 dimensional sub-space for each 𝑁𝑖 can be 

approximated by 

𝑎𝑟𝑔𝑚𝑖𝑛𝑥,𝜃,𝐐 ∑ ∥ 𝑥𝑖𝑗 − (𝑥 + 𝐐𝜃𝑗) ∥2
2𝑘

𝑗=1
=

𝑎𝑟𝑔𝑚𝑖𝑛𝑥,Θ,𝐐 ∥ 𝑁𝑖 − (𝑥𝑒𝑇 + 𝐐Θ) ∥2
2

      (5) 

where, 𝐐 consists of 𝑑 orthonormal columns and Θ =
[𝜃1 … 𝜃𝑘]. It holds the local tangent coordinates of 

neighborhood data points. Further these local tangent 

coordinates will be aligned in lower dimensional space using 

affine transformations to obtain global coordinate system.  

____________________________________________       

Algorithm 1: CcLTSA 

____________________________________________       
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      Input: 𝑋 ∈ ℝ𝐷: Data 

      𝑛𝑛: Nearest neighbor count 

      Output: Γ ∈ ℝ𝑑: Low dimensional representation 

1. for 𝑖 ← 1 to 𝑛 do 

2.      𝑁𝑖 ← 𝑓𝑖𝑛𝑑_𝑘𝑛𝑛(𝑥𝑖, 𝑛𝑛); 

3.      𝑥𝑖 ←
1

𝑛
𝑛 ∑ 𝑥𝑁𝑖,𝑗

𝑛𝑛

𝑗=1
; 

4.      𝑥
~

𝑖 = 𝑁𝑖 − 𝑥𝑖𝑒
𝑇  ;             \\Centered data 

5.      𝐾 = 𝜅𝑥(𝑥
~

𝑖 , 𝑥
~

𝑖
𝑇);              \\Positive definite kernel 

6.      𝐻 = 𝐼 −
𝟙

𝑛
 ;         \\Centering matrix 

7.      𝑡 ← 𝐻𝐾𝐻  ;             \\HSIC cross-covariance 

8.      [𝑔1 … 𝑔𝑑] ← 𝑝𝑐𝑎(𝑡, 𝑑);          \\Local coordinates 

9.      𝐺𝑖 ← [𝑒/√𝑘, 𝑔
1

… 𝑔
𝑑

]; 

10.      𝐵(𝐼𝑖 , 𝐼𝑖) ← 𝐵(𝐼𝑖 , 𝐼𝑖) + 𝐼 − 𝐺𝑖𝐺𝑖
𝑇;             

11. end 

12. \* Get global coordinates  *\ 

13. Γ ← 𝑠𝑣𝑑(𝐵, 𝑑, ′𝑠𝑚𝑎𝑙𝑙′); 

14. 𝑟𝑒𝑡𝑢𝑟𝑛 Γ; 

____________________________________________       

 

Then, 

Θ𝑖 = 𝐐
𝑖
𝑇𝑁𝑖(𝐼 −

1

𝑘
𝑒𝑒𝑇) = [𝜃𝑖,1 … 𝜃𝑖,𝑘] 

𝜃𝑖,𝑗 = 𝐐
𝑖
𝑇(𝑥𝑖,𝑗 − 𝑥𝑖) 

∴ 𝑥𝑖,𝑗 = 𝑥𝑖 + 𝐐𝑖𝜃𝑖,𝑗 + 𝜉𝑖,𝑗 

𝜉
𝑖,𝑗

= (𝐼 − 𝐐
𝑖
𝐐

𝑖
𝑇)(𝑥𝑖,𝑗 − 𝑥𝑖) 

where, 𝜉
𝑖,𝑗

 is the tangent reconstruction error. The global 

coordinate {𝜏𝑖}𝑖=1
𝑛  is constructed using the local coordinates 𝜃𝑖,𝑗  

where each 𝜏𝑖,𝑗 should fulfill 

𝜏𝑖,𝑗 = 𝜏𝑖 + 𝐿𝑖𝜃𝑖,𝑗 + 𝜖𝑖,𝑗 

for 𝑖 = 1 … 𝑛  and 𝑗 = 1 … 𝑘 defines each 𝑥𝑖 's local 

neighborhood. 

⇒ Γ𝑖 =
1

𝑘
Γ𝑖𝑒𝑒𝑇 + 𝐿𝑖Θ𝑖 + 𝐸𝑖  (6) 

where, Γ𝑖 = [𝜏𝑖,1 … 𝜏𝑖,𝑘] and 𝐸𝑖 = [𝜖𝑖,1 … 𝜖𝑖,𝑘] is the local 

reconstruction error. 

𝐸𝑖 = Γ𝑖 (𝐼 −
1

𝑘
𝑒𝑒𝑇 − 𝐿𝑖Θ𝑖)  (7) 

 

The optimal 𝐿𝑖 for a fixed Γ𝑖 is given by 

𝐿𝑖 = Γ𝑖(𝐼 −
1

𝑘
𝑒𝑒𝑇)Θ𝑖

+ = Γ𝑖Θ𝑖
+ 

∴ 𝐸𝑖 = Γ𝑖𝑤𝑖  where, 𝑤𝑖 = (𝐼 −
1

𝑘
𝑒𝑒𝑇) (𝐼 − Θ𝑖

+Θ𝑖) 

where, Θ𝑖
+  represents pseudo inverse of Θ𝑖. 

⇒ ∑ ∥ 𝐸𝑖 ∥𝐹
2

𝑛

𝑖=1

=∥ 𝑇𝑆𝑊 ∥𝐹
2  

where, 𝑆 = [𝑠1 … 𝑠𝑛] is selection matrix such that Γ𝑠𝑖 = 𝜏𝑖  and 

𝑊 = diag(𝑤1 … 𝑤𝑛). Constraint ΓΓ𝑇 = 𝐼𝑑  helps finding 

unique Γ. Then, the vector e becomes the eigenvector of 𝐵 =
𝑆𝑊𝑊𝑇𝑆𝑇 with respect to eigenvalue zero hence, optimal Γ is 

given by the eigenvectors corresponding to 2nd to d +
1 smallest eigenvalues of B. 

 

4. EXPERIMENTS AND RESULTS 
 

 The effectiveness of the proposed CcLTSA based non-

linear dimensionality reduction technique has been tested by 

performing extensive experiments on seven synthetic and four 

real-world data set. The performance of CcLTSA has been 

compared with existing state-of-the-art dimensionality 

reduction methods: PCA, ISOMAP, LLE, LE, HE, and LTSA. 

The synthetic data set contains high dimensional data for which 

their respective intrinsic dimension and geometry is well 

known. In the real-world data set, two linear classifiers i.e. kNN 

and SVM [30] have been trained assuming that the intrinsic 

dimensional representation obtained using the above-

mentioned methods contains linear decision boundary. 

 

4.1 Synthetic Datasets 

 

Coil: The original data is shown in fig. 2(a). In its intrinsic 

dimension, it is actually a straight line embedded as a coilin 3D 

space. In first set of results shown from fig. 2(c) to 2(h), the 

nearest neighborhood graph for the methods were created by 

taking 6 nearest neighbors (𝑁𝑁) from the point of interest (PCA 

does not require a graph). As evident, on 𝑁𝑁 = 6, LLE and 

CcLTSA were able to give optimal intrinsic geometry 

representation while ISOMAP struggled and created 3 

segments of the same line. PCA, HE and LTSA were able to 

extract the line but failed to straighten the curvature which leads 

to sub-optimal representation. LE gave representation similar to 

CcLTSA but failed to hold the tail instances to make them 

appear like outliers. The same experiment was performed again 

for graph based algorithms with 𝑁𝑁 = 10 as shown in fig. 2(i) 

to 2(n). By increasing the 𝑁𝑁, the connectivity in the graph was 

artificially increased. ISOMAP, LTSA and HE got adversely 

affected, and the representation became poor than 𝑁𝑁 = 6. 

LLE and CcLTSA remained unaffected which proves the 

robustness of the proposed method. The representation of LE 

got improved, and the tail instances appeared more connected 

than 𝑁𝑁 = 6.  

 

Sine cylinder: The data generated in sine cylinder is a sine 

wave with head and tail connected around a cylinder. 

Intrinsically it is a circle embedded in a 3D space, as shown in 

fig. 3(a). Fig. 3(b) to 3(h) show the low dimensional 

representation obtained using various dimensionality reduction 

method with 𝑁𝑁 = 5.  

 

The simple geometrical shape of the data allowed 

PCA, ISOMAP, and CcLTSA to extract the accurate intrinsic 

representation of sine cylinder. An irregular ellipse was 

recovered through LLE, which shows the incompetence of the 

method on simple geometric shapes. Other methods LE, HE and 

LTSA either failed to preserve the connectivity of the data 

points or remain unable to extract the smooth circle from the 

data. This proves that proposed CcLTSA is effective even for 

simple data set. 
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(a) Coil (b) PCA (c) ISOMAP (d) LLE 

  

  

(e) LE (f) HE (g) LTSA (h) CcLTSA 

 

 

 

 

(c) ISOMAP (d) LLE (e) LE (f) HE 

 

  

 

 (g) LTSA (h) CcLTSA  

Figure 2: Dimensionality reduction on coil 

 

 

   

(a) Sine Cylinder (b) PCA (c) ISOMAP (d) LLE 

  

  

(e) LE (f) HE (g) LTSA (h) CcLTSA 

Figure 3: Dimensionality reduction on Sine cylinder 

 

Sine hyperboloid: The sine hyperboloid data is similar to sine 

cylinder except for extra curvature introduced in the middle of 

the shape to make it wrap around a hyperboloid as shown in fig. 

4(a). Among all the methods with 𝑁𝑁 = 6, CcLTSA was the 

only method which was able to extract the true intrinsic 

geometry of a smooth circle from given data, as shown in fig. 

4(h). LE (fig. 4(e)) failed to preserve the intermediate data 

connectivity, which shows its inefficiency. All other methods 

were able to preserve the data connectivity; however, they 

failed to extract the smooth circle representation from the data. 

LLE (fig. 4(d)), HE (fig. 4(f)) and LTSA (fig. 4(g)) extracted 

an irregular shape which destroyed the spatial information 

available in data. PCA (fig. 4(b)) and ISOMAP (fig. 4(c)) gave 

similar results which proved to be sub-optimal. 

 

 

  

 

(a) Sine Hyperboloid (b) PCA (c) ISOMAP (d) LLE 

  

  

(e) LE (f) HE (g) LTSA (h) CcLTSA 

Figure 4: Dimensionality reduction on Sine hyperboloid 

Sine rotation: The sine wave rotation data consist of a simple 

2D sine wave twisted in the third dimension. Originally it is a 

straight line embedded in 3D space as shown in fig. 5(a). Fig. 

5(b) to 5(h) show the intrinsic representation extracted using 

above mentioned dimensionality reduction techniques 

using 𝑁𝑁 = 6.  

 

 

   

(a) Sine Rotation (b) PCA (c) ISOMAP (d) LLE 

  

  

(e) LE (f) HE (g) LTSA (h) CcLTSA 

Figure 5: Dimensionality reduction on Sine Rotation 

In this experiment, LLE (fig. 5(d)) and HE (fig. 5(f)) 

gave the most accurate low dimensional representation. Both 

ISOMAP (fig. 5(c)) and LE (fig. 5(e)) lost the spatial 

information present in the data by projecting disjoint instances 

section. PCA (fig. 5(b)) and LTSA (fig 5(g)) preserved the data 

connectivity information but they were not able to straighten 

the twists in the original data. The proposed method CcLTSA 

exposed the additional connectivity hidden in the data along 

with preserving the original spatial information, as shown in fig. 

5(h). The additional connectivity could prove useful in further 

action of clustering, classification, or regression.  
 

Sine sphere: The sine sphere data is a smooth 2D circle 

modelled using a sine wave wrapped around a sphere in a 3D 

space, as shown in fig. 6(a). Among all the methods, only LTSA 

and CcLTSA were able to extract the circle from original data 

as depicted in fig. 6(g) and fig. 6(h) respectively. Rest all the 

methods were able to preserve the data connectivity 

information at the cost of sub-optimal low dimensional 

representation. This proves that the CcLTSA leverages basic 

LTSA properties whenever required to exploit the accurate 

intrinsic geometrical information.  
 

 

  

 

(a) Sine Sphere (b) PCA (c) ISOMAP (d) LLE 
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(e) LE (f) HE (g) LTSA (h) CcLTSA 

Figure 6: Dimensionality reduction on Sine sphere 

Toroidal helix: Fig. 7(a) shows the toroidal helix data, which 

is originally a smooth 2D circle embedded in a coil structure in 

3D space. In this experiment using 𝑁𝑁 = 5, all the methods 

preserved the local data connectivity information, as shown in 

fig. 7(b) to 7(h) but only ISOMAP (fig. 7(c)) and CcLTSA (fig. 

7(h)) were able to produce the accurate low dimensional 

representation of the toroidal helix. LLE gave a sub-optimal 

representation using an ellipse as shown in fig. 7(d). Rest of all 

the methods proved incompetent, as they were not able to 

extract the intrinsic 2D circle hidden in the data. This proves 

that the cross-covariance enables CcLTSA to exploit the global 

connectivity of the graph, along with preserving the local 

information. 

  

 

  

 

(a) Toroidal Helix (b) PCA (c) ISOMAP (d) LLE 

 

 

  

(e) LE (f) HE (g) LTSA (h) CcLTSA 

Figure 7: Dimensionality reduction on Toroidal Helix 

Twin peaks: The twin peaks data is originally a 2D flat strip 

with peaks at the two corners, as shown in fig. 8(a). Among all 

the methods, PCA (fig. 8(b)) gave the most accurate low 

dimensional representation.  

 

 

  

 

(a) Twin Peak (b) PCA (c) ISOMAP (d) LLE 

  

 

 

(e) LE (f) HE (g) LTSA (h) CcLTSA 

Figure 8: Dimensionality reduction on Twin Peak 

After PCA, LE (fig. 8(e)) and CcLTSA (fig. 8(h)) gave 

the best representation as compared to other methods 

using 𝑁𝑁 = 8. LLE (fig. 8(d)), HE (fig. 8(f)) and LTSA (fig. 

8(g)) gave grossly inaccurate low dimensional representation as 

they either discarded the local information, which changed the 

strip to a line or proved incapable of exploiting global 

connectivity information leaving the peaks and valleys as it is. 

This shows that CcLTSA holds properties similar to LE which 

can be used to exploit the data whenever required. 

 

 
4.2 Real World Datasets 

Four real-world data include Facebook metrics, 

fashion MNIST, Lego bricks, and mobile pricing have been 

evaluated using kNN and SVM linear classifiers. The data 

exhibits the dynamics of the content generated and consumed 

over various social networks. The feature co-relation in the 

input data adversely affects the underlying ML model. Hence, 

in the first step, the input data is reduced to its intrinsic 

dimension, which contains enough discriminative power useful 

for classification. In the next step, kNN and SVM classifiers are 

trained on the reduced input space for the given labels. This 

process is repeated 10 times by randomly selecting training and 

testing instances in each round. The accuracy of the 

dimensionality reduction techniques employed is measured by 

the mean classification error of both kNN and SVM across the 

10 rounds. Other than PCA, all methods require a graph to 

proceed. In these experiments, the graph is created through the 

nearest neighbor method. To further to observe the change in 

low dimension representation from graph-based methods, the 

value of 𝑁𝑁 varies from 7 to 17. 

 

Facebook metrics: The Facebook metric data [1] contains 

textual posts, images, and promotional videos, etc., of a leading 

cosmetic brand in 2014 on Facebook. The aim of the study is to 

predict the impact of these online posts. The data consists of 

500 observations spanned over 18 attributes. Out of them, first 

7 features constitute the input space containing data/time of 

post, unique post identification, the content of the post, post 

type/category, and paid post. The rest of the 11 features contain 

the respective posts' impact in terms of lifetime post total reach, 

impression, user engagement, post-consumption, likes, 

comments, share, etc. 

 

The data is reduced from 7 dimensions to one 

dimension for an optimal input space representation using 

CcLTSA and other 6 methods. The resultant intrinsic 

dimensional representation is further modelled using kNN and 

SVM classifier trained using 300 instances, the rest 200 

instances were used for the testing purpose. Table I lists the 

mean error of all 10 rounds for NN=7-17. As PCA remains 

independent of NN, the result remained constant for all NN 

values. 

 

As evident, the proposed CcLTSA remained more 

accurate than other methods for NN= 13 and 17. The vanilla 

LTSA gave high accuracy result for NN=7 using kNN 

classifier. As ISOMAP creates a fully connected graph using 

Dijkstra or other shortest path method, for NN=7-11, it failed to 

create a single connected graph and hence, the model was not 

trained for those values. For NN=11, HE gave most accurate 

results as compared to others on both kNN and SVM classifiers. 

Overall for kNN classifier, CcLTSA gave most accurate results 

followed by PCA, LTSA, LE, HE, LLE and ISOMAP in the 

same order based on the mean of all NN error values. 
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Table I 

Facebook Metrics (d=1) Mean Error 

Method Classifier NN=7 NN=11 NN=13 NN=17 

CcLTSA 
SVM 25.19  24.71  25.46  25.07 

kNN 28.85  28.86  27.75  29.04 

PCA 
SVM 25.16  25.16 25.16 25.16 

kNN 28.42  28.42 28.42 28.42 

LLE 
SVM 25.71  25.75  26.35  26.03 

kNN 28.23  28.05  29.38  28.65 

LTSA 
SVM 25.75  26.35  25.34  25.66 

kNN 27.41  28.28  28.09  29.61 

LE 
SVM 25.75  25.75 25.75 25.71 

kNN 27.64  28.88  30.71  27.73 

HE 
SVM 25.89  24.56  25.71  25.71 

kNN 29.47  27.82  29.24  30.16 

ISOMAP 
SVM ∞ 25.74  25.67 

kNN ∞ 29.07  29.02 

 

 

Fashion MNIST: Similar to original MNIST handwritten data, 

the fashion MNIST [31] consists of 70000 images from 10 

different fashion categories (top, Trouser, Pullover, Dress, 

Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot). Each image 

consists of 28×28 grayscale pixels.  

 

Fig. 9 shows a snapshot of images. It is essential to 

learn the link between the images available over the social 

media and their respective label or category. The data was 

reduced from 784 dimensions to 8 using CcLTSA and other 

methods. Out of 70000 instances, in each round out of 10, 

42469 instances were randomly selected for training leaving 

rest for testing. 

 

 
Figure 9: Fashion MNIST (10 categories) 

 
Table II depicts the mean classification error for both 

kNN and SVM classifiers using all dimensionality reduction 

methods. As evident, the proposed CcLTSA gave accurate 

predictions against all NN values, which shows the robustness 

of the proposed method. CcLTSA was able to increase the 

classification accuracy to ≈85% by giving the optimal low 

dimensional representation of the data. ISOMAP in here also 

failed to find a single connected component for NN=7-13 and 

thus no model was trained using ISOMAP for the said values. 

On comparing the methods by taking mean across all NN  

values for both kNN and SVM classifier, CcLTSA gave most 

accurate results followed by PCA, LLE, LE, LTSA, HE and 

ISOMAP. 

 
Table II 

Fashion MNIST (d=8) Mean Error 

Method Classifier NN=7 NN=11 NN=13 NN=17 

CcLTSA 
SVM 20.97 23.16  21.17  13.82 

kNN 15.32  19.79  20.49  15.18 

PCA 
SVM 21.23 21.23 21.23 21.23 

kNN 22.07 22.07 22.07 22.07 

LLE 
SVM 23.77 23.84  22.83  22.29 

kNN 23.87  25.12  24.61  24.30 

LTSA 
SVM 24.86  24.25  23.65  23.27 

kNN 27.23  24.98  24.76  24.57 

LE 
SVM 23.03 23.03  23.26  23.26 

kNN 26.24  24.89  24.86  25.35 

HE 
SVM 31.40 28.90  27.30  26.31 

kNN 36.74 27.84  27.51  26.57 

ISOMAP 
SVM ∞ 27.14 

kNN ∞ 35.18 

 

Lego Bricks Set: Fig. 10 shows a snapshot of the given data 

[32]. The data is spanned across 16 categories of different 

building bricks manufactured by Lego. Each category contains 

≈400 images wherein each image consist of 200×200 grayscale 

pixels. However, by exploiting the intrinsic geometrical 

information, the data can be represented using just 5 

dimensions. The above listed state-of-the-art dimensionality 

reduction methods along with CcLTSA have been employed to 

change the given data representation to its optimal form. 

 

 
Figure 100: Lego Bricks (16 Categories) 

 
Table III 

Lego Bricks (d=5) Mean Error 

Method Classifier NN=7 NN=11 NN=13 NN=17 

CcLTSA 
SVM 8.84 9.54  10.06  9.23 

kNN 17.63 20.01  16.61  17.35 

PCA 
SVM 24.37 24.37 24.37 24.37 

kNN 27.32 27.32 27.32 27.32 

LLE 
SVM 22.67 32.93  24.11  26.51 

kNN 19.62 28.53  21.40  30.87 

LTSA 
SVM 58.83  83.75  23.64  22.59 

kNN 44.82 76.39  23.28  29.82 

LE 
SVM 60.12 62.22  69.52  69.28 

kNN 60.36 63.25  64.20  62.24 

HE 
SVM 34.08 19.44  21.68  22.94 

kNN 28.49 23.14 21.79  22.43 

ISOMAP 
SVM 64.18 86.48  25.62  14.86 

kNN 40.52 76.63  24.85  29.54 

 

Table III contains the mean classification error 

obtained using kNN and SVM classifiers. Except for NN 

independent PCA method, the change in representation through 

all other methods were observed by varying NN values as 

mentioned in the table. Across all parameters, the proposed 

CcLTSA method gave optimal representation, thus increasing 

the underlying models' accuracy to ≈92%.  HE gave second-



 

 

          

 
 

©2012-20 International Journal of Information Technology and Electrical Engineering 

ITEE, 9 (2), pp. 32-41, APR 2020                                      Int. j. inf. technol. electr. eng. 

39 

ITEE Journal 
Information Technology & Electrical Engineering 

 
 

ISSN: - 2306-708X 

 
 

Volume 9, Issue 2     
April 2020                                                                                                  

most accurate inferences followed by PCA, LLE, LTSA, 

ISOMAP, and LE. 

 

Mobile Pricing: Today the Internet is full of description of 

electronic devices with the majority of mobile devices 

containing their features, reviews, and price. In this experiment, 

a similar data set has been used containing 3000 mobile handset 

description spanned across 20 features [33]: battery capacity, 

Bluetooth, WiFi, processor, 4G, 3G, camera, etc. The aim is to 

predict the price segment (0-3; where 0-low cost and 3-very 

high cost) of the respective handset based on input features. The 

data was reduced from 20 input dimensions to 4 dimensions 

optimally representing the data on its intrinsic dimensional 

space. 

 
Table IV 

Mobile Pricing (d=4) Mean Error 

Method Classifier NN=7 NN=11 NN=13 NN=17 

CcLTSA 
SVM 12.49 6.90  3.60 3.95 

kNN 14.66 6.22  10.49  5.96 

PCA 
SVM 6.22  6.22 6.22 6.22 

kNN 12.19 12.19 12.19 12.19 

LLE 
SVM 21.85 5.59  6.22  4.95 

kNN 22.87 7.24  11.69  7.49 

LTSA 
SVM 59.08 5.33  5.71  6.22 

kNN 29.22 11.05  11.05  12.07 

LE 
SVM 11.94 9.14  9.53  10.54 

kNN 13.72 11.94  11.56  12.83 

HE 
SVM 12.83 10.67  14.99  13.59 

kNN 14.10 12.32  16.13  16.90 

ISOMAP 
SVM ∞ 14.30  12.61  16.54 

kNN ∞ 16.13  11.69  22.87 

 

Table IV lists the mean classification error of kNN and 

SVM classifiers for listed dimensionality reduction methods on 

different NN value for graph creation. As evident, the proposed 

CcLTSA achieved ≈94% accurate prediction for kNN classifier 

on NN=11. For small values of NN, ISOMAP failed to create a 

fully connected graph, and hence, no classifier model was 

trained for the same. On the mean error of both classifiers on all 

NN values, CcLTSA remained the most accurate method 

followed by PCA, LLE, LE, HE, LTSA, and ISOMAP. 

 

REMARKS: The big data generated and consumed on the 

social network remains difficult for ML algorithms to give 

accurate inference due to the inherent large number of 

dimensions. It is well known that not all dimensions span the 

data, but few of them are present due to unknown 

transformations and noise in the data. Thus, an optimal 

dimensionality reduction method is required to project this 

high-dimensional data to its true intrinsic dimension containing 

sufficient discriminative power.  

Though PCA performs well on linear data-set, it loses 

the non-linear relationship between the data. The state-of-the-

art methods LTSA, LLE, ISOMAP, LE and HE preserve the 

global non-linear properties by exploiting and preserving the 

local linear property hidden in the data. However, the measure 

of similarity between data instances in these algorithms relies 

on some distance function like Euclidean or cosine, etc. The 

absence of statistical similarity measurement does not allow 

these algorithms to exploit the intrinsic information present in 

the data. CcLTSA utilizes HSIC based cross-covariance 

operator to measure the independence between two random 

variables, i.e., point of interest and its local neighbors. If the 

HSIC value is closer to 1, then, the two random variables are 

more dependent. Similarly, on the lower dimension, this local 

property should be preserved. The more similar are two 

instances, they should lie spatially closer to each other on the 

target dimension, and this is assured by cross-covariance 

statistical independence measurement. 

 

Extensive experiments performed on seven synthetic 

and four real-world datasets show that the proposed CcLTSA 

gave a true low-dimensional representation of the given high 

dimensional data which further increased the underlying 

classifiers' model accuracy. The existing state-of-the-art 

method fails to perform due to their sole dependence on the 

spatial relation between the data instances. Due to unknown 

transformations and inherent noise in the data, the spatial 

similarity proves to be grossly inaccurate. Here, statistical 

independence measurement using the cross-covariance 

operator in CcLTSA allows the method to increase the 

weightage of dependent instances. The proposed method 

optimizes the low dimensional representation by maximizing 

the statistical dependence between instances. This allows 

CcLTSA to preserve local linear property along with global 

non-linear property. This makes visualization, modelling, 

clustering, classification, regression, etc. on the data easy and 

accurate. 

 

5. CONCLUSION 
 

 The massive content generated on social media needs 

effective and efficient algorithms for data analysis, 

visualization, or clustering, etc. Due to high feature correlation 

and noise present in data, these tasks become difficult. 

Extensive experiments on both synthetic and real-world data set 

prove that the proposed cross-covariance based LTSA 

efficiently removes the effect of noise and co- related attributes 

allowing the underlying algorithms to extract the true intrinsic 

properties of data. On the known synthetic manifolds, the 

results show that the proposed method preserved the smoothest 

and true intrinsic geometry. Moreover, the increased accuracy 

of linear classifiers on the real-world data set proves that the 

representation obtained from proposed method holds maximum 

discriminative features and minimum noised. In performance 

bench-marking, on the data set containing product details 

scraped from social media, the proposed method achieved ≈
92% of accuracy and outperformed the existing state-of-the-art 

dimensionality reduction methods by  ≥ 3% . 
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